History
Early philosophers were divided as to whether the seat of the soul lies in the brain or heart. Aristotle favored the heart, and thought that the function of the brain was merely to cool the blood. Democritus, the inventor of the atomic theory of matter, argued for a three-part soul, with intellect in the head, emotion in the heart, and lust near the liver. Hippocrates, the "father of medicine", came down unequivocally in favor of the brain. In his treatise on epilepsy he wrote:
Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same organ we become mad and delirious, and fears and terrors assail us, some by night, and some by day, and dreams and untimely wanderings, and cares that are not suitable, and ignorance of present circumstances, desuetude, and unskillfulness. All these things we endure from the brain, when it is not healthy...
Hippocrates, On the Sacred Disease
The Roman physician Galen also argued for the importance of the brain, and theorized in some depth about how it might work. Galen traced out the anatomical relationships among brain, nerves, and muscles, demonstrating that all muscles in the body are connected to the brain through a branching network of nerves. He postulated that nerves activate muscles mechanically by carrying a mysterious substance he called pneumata psychikon, usually translated as "animal spirits".Galen's ideas were widely known during the Middle Ages, but not much further progress came until the Renaissance, when detailed anatomical study resumed, combined with the theoretical speculations of René Descartes and those who followed him. Descartes, like Galen, thought of the nervous system in hydraulic terms. He believed that the highest cognitive functions are carried out by a non-physical res cogitans, but that the majority of behaviors of humans, and all behaviors of animals, could be explained mechanistically.
The first real progress toward a modern understanding of nervous function, though, came from the investigations of Luigi Galvani, who discovered that a shock of static electricity applied to an exposed nerve of a dead frog could cause its leg to contract. Since that time, each major advance in understanding has followed more or less directly from the development of a new technique of investigation. Until the early years of the 20th century, the most important advances were derived from new methods for staining cells. Particularly critical was the invention of the Golgi stain, which (when correctly used) stains only a small fraction of neurons, but stains them in their entirety, including cell body, dendrites, and axon. Without such a stain, brain tissue under a microscope appears as an impenetrable tangle of protoplasmic fibers, in which it is impossible to determine any structure. In the hands of Camillo Golgi, and especially of the Spanish neuroanatomist Santiago Ramón y Cajal, the new stain revealed hundreds of distinct types of neurons, each with its own unique dendritic structure and pattern of connectivity.
In the first half of the 20th century, advances in electronics enabled investigation of the electrical properties of nerve cells, culminating in work by Alan Hodgkin, Andrew Huxley, and others on the biophysics of the action potential, and the work of Bernard Katz and others on the electrochemistry of the synapse. These studies complemented the anatomical picture with a conception of the brain as a dynamic entity. Reflecting the new understanding, in 1942 Charles Sherrington visualized the workings of the brain waking from sleep:
The great topmost sheet of the mass, that where hardly a light had twinkled or moved, becomes now a sparkling field of rhythmic flashing points with trains of traveling sparks hurrying hither and thither. The brain is waking and with it the mind is returning. It is as if the Milky Way entered upon some cosmic dance. Swiftly the head mass becomes an enchanted loom where millions of flashing shuttles weave a dissolving pattern, always a meaningful pattern though never an abiding one; a shifting harmony of subpatterns.
—Sherrington, 1942, Man on his Nature
In the second half of the 20th century, developments in chemistry, electron microscopy, genetics, computer science, functional brain imaging, and other fields progressively opened new windows into brain structure and function. In the United States, the 1990s were officially designated as the "Decade of the Brain" to commemorate advances made in brain research, and to promote funding for such research.
In the 21st century, these trends have continued, and several new approaches have come into prominence, including multielectrode recording, which allows the activity of many brain cells to be recorded all at the same time; genetic engineering, which allows molecular components of the brain to be altered experimentally; and genomics, which allows variations in brain structure to be correlated with variations in DNA properties.
Resources
^ Pelvig, DP; Pakkenberg, H; Stark, AK; Pakkenberg, B (2008). "Neocortical glial cell numbers in human brains". Neurobiology of Aging 29 (11): 1754–1762. doi:10.1016/j.neurobiolaging.2007.04.013. PMID 17544173.
^ a b Hippocrates (400 BCE). On the Sacred Disease. Francis Adams.
^ a b c Shepherd, GM (1994). Neurobiology. Oxford University Press. p. 3. ISBN 978-0-19-508843-4.
^ Sporns, O (2010). Networks of the Brain. MIT Press. p. 143. ISBN 978-0-262-01469-4.
^ Başar, E (2010). Brain-Body-Mind in the Nebulous Cartesian System: A Holistic Approach by Oscillations. Springer. p. 225. ISBN 978-1-4419-6134-1.
^ Singh, I (2006). "A brief review of the techniques used in the study of neuroanatomy". Textbook of human neuroanatomy. Jaypee Brothers Publishers. p. 24. ISBN 978-81-8061-808-6.
^ Principles of Neural Science p. 20
^ Principles of Neural Science, p. 21
^ Douglas, RJ; Martin, KA (2004). "Neuronal circuits of the neocortex". Annual Review of Neuroscience 27: 419–451. doi:10.1146/annurev.neuro.27.070203.144152. PMID 15217339.
^ Barnett, MW; Larkman, PM (2007). "The action potential". Practical Neurology 7 (3): 192–197. PMID 17515599.
^ Principles of Neural Science, Ch.10, p. 175
^ a b Principles of Neural Science, Ch. 10
^ a b c Shepherd, GM (2004). "Ch. 1: Introduction to synaptic circuits". The Synaptic Organization of the Brain. Oxford University Press US. ISBN 978-0-19-515956-1.
^ Williams, RW; Herrup, K (1988). "The control of neuron number". Annual Review of Neuroscience 11: 423–453. doi:10.1146/annurev.ne.11.030188.002231. PMID 3284447.
^ Heisenberg, M (2003). "Mushroom body memoir: from maps to models". Nature Reviews Neuroscience 4 (4): 266–275. doi:10.1038/nrn1074. PMID 12671643.
^ Principles of Neural Science, Ch. 2
^ a b Jacobs, DK, Nakanishi N, Yuan D et al. (2007). "Evolution of sensory structures in basal metazoa". Integrative & Comparative Biology 47 (5): 712–723. doi:10.1093/icb/icm094. PMID 21669752.
^ a b Balavoine, G (2003). "The segmented Urbilateria: A testable scenario". Integrative & Comparative Biology 43 (1): 137–147. doi:10.1093/icb/43.1.137.
^ Schmidt-Rhaesa, A (2007). The Evolution of Organ Systems. Oxford University Press. p. 110. ISBN 978-0-19-856669-4.
^ Kristan Jr, WB; Calabrese, RL; Friesen, WO (2005). "Neuronal control of leech behavior". Prog Neurobiology 76 (5): 279–327. doi:10.1016/j.pneurobio.2005.09.004. PMID 16260077.
^ Mwinyi, A; Bailly, X; Bourlat, SJ; Jondelius, U; Littlewood, DT; Podsiadlowski, L (2010). "The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis". BMC Evolutionary Biology 10: 309. doi:10.1186/1471-2148-10-309. PMC 2973942. PMID 20942955.
^ Barnes, RD (1987). Invertebrate Zoology (5th ed.). Saunders College Pub. p. 1. ISBN 978-0-03-008914-5.
^ a b Butler, AB (2000). "Chordate Evolution and the Origin of Craniates: An Old Brain in a New Head". Anatomical Record 261 (3): 111–125. doi:10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F. PMID 10867629.
^ Bulloch, TH; Kutch, W (1995). "Are the main grades of brains different principally in numbers of connections or also in quality?". In Breidbach O. The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser. p. 439. ISBN 978-3-7643-5076-5.
^ "Flybrain: An online atlas and database of the drosophila nervous system". Retrieved 2011-10-14.
^ Konopka, RJ; Benzer, S (1971). "Clock Mutants of Drosophila melanogaster". Proc Nat Acad Sci U.S.A. 68 (9): 2112–6. doi:10.1073/pnas.68.9.2112. PMC 389363. PMID 5002428.
^ Shin HS et a. (1985). "An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates". Nature 317 (6036): 445–8. doi:10.1038/317445a0. PMID 2413365.
^ "WormBook: The online review of C. elegans biology". Retrieved 2011-10-14.
^ Hobert, O (2005). Specification of the nervous system. In The C. elegans Research Community. "Wormbook". WormBook: 1–19. doi:10.1895/wormbook.1.12.1. PMID 18050401.
^ White, JG; Southgate, E; Thomson, JN; Brenner, S (1986). "The Structure of the Nervous System of the Nematode Caenorhabditis elegans". Phil. Trans. Roy. Soc. London (Biology) 314 (1165): 1–340. doi:10.1098/rstb.1986.0056.
^ Hodgkin, J (2001). "Caenorhabditis elegans". In Brenner S, Miller JH. Encyclopedia of Genetics. Elsevier. pp. 251–256. ISBN 978-0-12-227080-2.
^ Kandel, ER (2007). In Search of Memory: The Emergence of a New Science of Mind. WW Norton. pp. 145–150. ISBN 978-0-393-32937-7.
^ Shu, DG; Morris, SC; Han, J; Zhang, Z-F; Yasui, K.; Janvier, P.; Chen, L.; Zhang, X.-L. et al. (2003). "Head and backbone of the Early Cambrian vertebrate Haikouichthys". Nature 421 (6922): 526–529. doi:10.1038/nature01264. PMID 12556891.
^ Striedter, GF (2005). "Ch. 3: Conservation in vertebrate brains". Principles of Brain Evolution. Sinauer Associates. ISBN 978-0-87893-820-9.
^ Armstrong, E (1983). "Relative brain size and metabolism in mammals". Science 220 (4603): 1302–1304. doi:10.1126/science.6407108. PMID 6407108.
^ Jerison, HJ (1973). Evolution of the Brain and Intelligence. Academic Press. pp. 55–74. ISBN 978-0-12-385250-2.
^ Principles of Neural Science, p. 1019
^ a b Principles of Neural Science, Ch. 17
^ Parent, A; Carpenter, MB (1995). "Ch. 1". Carpenter's Human Neuroanatomy. Williams & Wilkins. ISBN 978-0-683-06752-1.
^ Northcutt, RG (2008). "Forebrain evolution in bony fishes". Brain Research Bulletin 75 (2–4): 191–205. doi:10.1016/j.brainresbull.2007.10.058. PMID 18331871.
^ Reiner, A; Yamamoto, K; Karten, HJ (2005). "Organization and evolution of the avian forebrain". The Anatomical Record Part A 287 (1): 1080–1102. doi:10.1002/ar.a.20253. PMID 16206213.
^ Principles of Neural Science, Chs. 44, 45
^ Siegel, A; Sapru, HN (2010). Essential Neuroscience. Lippincott Williams & Wilkins. pp. 184–189. ISBN 978-0-7817-8383-5.
^ Swaab, DF; Boller, F; Aminoff, MJ (2003). The Human Hypothalamus. Elsevier. ISBN 978-0-444-51357-1.
^ Jones, EG (1985). The Thalamus. Plenum Press. ISBN 978-0-306-41856-3.
^ a b Principles of Neural Science, Ch. 42
^ Saitoh, K; Ménard, A; Grillner, S (2007). "Tectal control of locomotion, steering, and eye movements in lamprey". Journal of Neurophysiology 97 (4): 3093–3108. doi:10.1152/jn.00639.2006. PMID 17303814.
^ Puelles, L (2001). "Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium". Phil. Trans. Roy. Soc. London B (Biological Sciences) 356 (1414): 1583–1598. doi:10.1098/rstb.2001.0973. PMC 1088538. PMID 11604125.
^ Salas, C; Broglio, C; Rodríguez, F (2003). "Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity". Brain, Behavior and Evolution 62 (2): 72–82. doi:10.1159/000072438. PMID 12937346.
^ a b Grillner, S et al. (2005). "Mechanisms for selection of basic motor programs—roles for the striatum and pallidum". Trends in Neurosciences 28 (7): 364–370. doi:10.1016/j.tins.2005.05.004. PMID 15935487.
^ Northcutt, RG (1981). "Evolution of the telencephalon in nonmammals". Annual Review of Neuroscience 4: 301–350. doi:10.1146/annurev.ne.04.030181.001505. PMID 7013637.
^ a b Northcutt, RG (2002). "Understanding vertebrate brain evolution". Integrative & Comparative Biology 42 (4): 743–756. doi:10.1093/icb/42.4.743. PMID 21708771.
^ a b Barton, RA; Harvey, PH (2000). "Mosaic evolution of brain structure in mammals". Nature 405 (6790): 1055–1058. doi:10.1038/35016580. PMID 10890446.
^ Aboitiz, F; Morales, D; Montiel, J (2003). "The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and functional approach". Behavioral and Brain Sciences 26 (5): 535–552. doi:10.1017/S0140525X03000128. PMID 15179935.
^ Romer, AS; Parsons, TS (1977). The Vertebrate Body. Holt-Saunders International. p. 531. ISBN 0-03-910284-X.
^ a b Roth, G; Dicke, U (2005). "Evolution of the brain and Intelligence". Trends in Cognitive Sciences 9 (5): 250–257. doi:10.1016/j.tics.2005.03.005. PMID 15866152.
^ a b Marino, Lori (2004). "Cetacean Brain Evolution: Multiplication Generates Complexity" (PDF). International Society for Comparative Psychology (17): 1–16. Retrieved 2010-08-29.
^ Shoshani, J; Kupsky, WJ; Marchant, GH (2006). "Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution". Brain Research Bulletin 70 (2): 124–157. doi:10.1016/j.brainresbull.2006.03.016. PMID 16782503.
^ Finlay, BL; Darlington, RB; Nicastro, N (2001). "Developmental structure in brain evolution". Behavioral and Brain Sciences 24 (2): 263–308. doi:10.1017/S0140525X01003958. PMID 11530543.
^ Calvin, WH (1996). How Brains Think. Basic Books. ISBN 978-0-465-07278-1.
^ Sereno, MI; Dale, AM; Reppas, AM; Kwong, KK; Belliveau, JW; Brady, TJ; Rosen, BR; Tootell, RBH (1995). "Borders of multiple visual areas in human revealed by functional magnetic resonance imaging". Science (AAAS) 268 (5212): 889–893. doi:10.1126/science.7754376. PMID 7754376.
^ Fuster, JM (2008). The Prefrontal Cortex. Elsevier. pp. 1–7. ISBN 978-0-12-373644-4.
^ Principles of Neural Science, Ch. 15
^ Cooper, JR; Bloom, FE; Roth, RH (2003). The Biochemical Basis of Neuropharmacology. Oxford University Press US. ISBN 978-0-19-514008-8.
^ McGeer, PL; McGeer, EG (1989). "Chapter 15, Amino acid neurotransmitters". In G. Siegel et al. Basic Neurochemistry. Raven Press. pp. 311–332. ISBN 978-0-88167-343-2.
^ Foster, AC; Kemp, JA (2006). "Glutamate- and GABA-based CNS therapeutics". Current Opinion in Pharmacology 6 (1): 7–17. doi:10.1016/j.coph.2005.11.005. PMID 16377242.
^ Frazer, A; Hensler, JG (1999). "Understanding the neuroanatomical organization of serotonergic cells in the brain provides insight into the functions of this neurotransmitter". In Siegel, GJ. Basic Neurochemistry (Sixth ed.). Lippincott Williams & Wilkins. ISBN 0-397-51820-X.
^ Mehler, MF; Purpura, DP (2009). "Autism, fever, epigenetics and the locus coeruleus". Brain Research Reviews 59 (2): 388–392. doi:10.1016/j.brainresrev.2008.11.001. PMC 2668953. PMID 19059284.
^ Rang, HP (2003). Pharmacology. Churchill Livingstone. pp. 476–483. ISBN 0-443-07145-4.
^ Speckmann, E-J; Elger, CE (2004). "Introduction to the neurophysiological basis of the EEG and DC potentials". In Niedermeyer E, Lopes da Silva FH. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. pp. 17–31. ISBN 0-7817-5126-8.
^ a b Buzsáki, G (2006). Rhythms of the Brain. Oxford University Press. ISBN 978-0-19-530106-9. OCLC 63279497.
^ a b c Nieuwenhuys, R; Donkelaar, HJ; Nicholson, C (1998). The Central Nervous System of Vertebrates, Volume 1. Springer. pp. 11–14. ISBN 978-3-540-56013-5.
^ Safi, K; Seid, MA; Dechmann, DK (2005). "Bigger is not always better: when brains get smaller". Biology Letters 1 (3): 283–286. doi:10.1098/rsbl.2005.0333. PMC 1617168. PMID 17148188.
^ Mink, JW; Blumenschine, RJ; Adams, DB (1981). "Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis". American Journal of Physiology 241 (3): R203–212. PMID 7282965.
^ Raichle, M; Gusnard, DA (2002). "Appraising the brain's energy budget". Proc. Nat. Acad. Sci. U.S.A. 99 (16): 10237–10239. doi:10.1073/pnas.172399499. PMC 124895. PMID 12149485.
^ Mehagnoul-Schipper, DJ; van der Kallen, BF; Colier, WNJM; van der Sluijs, MC; van Erning, LJ; Thijssen, HO; Oeseburg, B; Hoefnagels, WH et al. (2002). "Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects.". Hum Brain Mapp 16 (1): 14–23. doi:10.1002/hbm.10026.
^ Soengas, JL; Aldegunde, M (2002). "Energy metabolism of fish brain". Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131 (3): 271–296. doi:10.1016/S1096-4959(02)00022-2. PMID 11959012.
^ a b Carew, TJ (2000). "Ch. 1". Behavioral Neurobiology: the Cellular Organization of Natural Behavior. Sinauer Associates. ISBN 978-0-87893-092-0.
^ a b c d Churchland, PS; Koch, C; Sejnowski, TJ (1993). "What is computational neuroscience?". In Schwartz EL. Computational Neuroscience. MIT Press. pp. 46–55. ISBN 978-0-262-69164-2.
^ von Neumann, J; Churchland, PM; Churchland, PS (2000). The Computer and the Brain. Yale University Press. pp. xi–xxii. ISBN 978-0-300-08473-3.
^ Lettvin, JY; Maturana, HR; McCulloch, WS; Pitts, WH (1959). "What the frog's eye tells the frog's brain" (pdf). Proceedings of the Institute of Radio Engineering 47: 1940–1951.
^ Hubel, DH; Wiesel, TN (2005). Brain and visual perception: the story of a 25-year collaboration. Oxford University Press US. pp. 657–704. ISBN 978-0-19-517618-6.
^ Farah, MJ (2000). The Cognitive Neuroscience of Vision. Wiley-Blackwell. pp. 1–29. ISBN 978-0-631-21403-8.
^ Engel, AK; Singer, W (2001). "Temporal binding and the neural correlates of sensory awareness". Tends in Cognitive Sciences 5 (1): 16–25. doi:10.1016/S1364-6613(00)01568-0. PMID 11164732.
^ Dayan, P; Abbott, LF (2005). "Ch.7: Network models". Theoretical Neuroscience. MIT Press. ISBN 978-0-262-54185-5.
^ Averbeck, BB; Lee, D (2004). "Coding and transmission of information by neural ensembles". Trends in Neurosciences 27 (4): 225–230. doi:10.1016/j.tins.2004.02.006. PMID 15046882.
^ a b Principles of Neural Science, Ch. 21
^ Principles of Neural Science, Ch. 34
^ Principles of Neural Science, Chs. 36, 37
^ Principles of Neural Science, Ch. 33
^ Dafny, N. "Anatomy of the spinal cord". Neuroscience Online. Retrieved 2011-10-10.
^ Dragoi, V. "Ocular motor system". Neuroscience Online. Retrieved 2011-10-10.
^ Gurney, K; Prescott, TJ; Wickens, JR; Redgrave, P (2004). "Computational models of the basal ganglia: from robots to membranes". Trends in Neurosciences 27 (8): 453–459. doi:10.1016/j.tins.2004.06.003. PMID 15271492.
^ Principles of Neural Science, Ch. 38
^ Shima, K; Tanji, J (1998). "Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements". Journal of Neurophysiology 80 (6): 3247–3260. PMID 9862919.
^ Miller, EK; Cohen, JD (2001). "An integrative theory of prefrontal cortex function". Annual Review of Neuroscience 24 (1): 167–202. doi:10.1146/annurev.neuro.24.1.167. PMID 11283309.
^ Principles of Neural Science, Ch. 49
^ a b Principles of Neural Science, Ch. 45
^ Antle, MC; Silver, R (2005). "Orchestrating time: arrangements of the brain circadian clock" (PDF). Trends in Neurosciences 28 (3): 145–151. doi:10.1016/j.tins.2005.01.003. PMID 15749168.
^ a b Principles of Neural Science, Ch. 47
^ Kleitman, N (1938, revised 1963, reprinted 1987). Sleep and Wakefulness. The University of Chicago Press, Midway Reprints series. ISBN 0-226-44073-7.
^ a b c Dougherty, P. "Hypothalamus: structural organization". Neuroscience Online. Retrieved 2011-10-11.
^ Gross, CG (1998). "Claude Bernard and the constancy of the internal environment" (PDF). The Neuroscientist 4 (5): 380–385. doi:10.1177/107385849800400520.
^ Dougherty, P. "Hypothalamic control of pituitary hormone". Neuroscience Online. Retrieved 2011-10-11.
^ Chiel, HJ; Beer, RD (1997). "The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment". Trends in Neurosciences 20 (12): 553–557. doi:10.1016/S0166-2236(97)01149-1. PMID 9416664.
^ Berridge, KC (2004). "Motivation concepts in behavioral neuroscience". Physiology & Behavior 8 (2): 179–209. doi:10.1016/j.physbeh.2004.02.004. PMID 15159167.
^ Ardiel, EL; Rankin, CH (2010). "An elegant mind: learning and memory in Caenorhabditis elegans". Learning and Memory 17 (4): 191–201. doi:10.1101/lm.960510. PMID 20335372.
^ Hyman, SE; Malenka, RC (2001). "Addiction and the brain: the neurobiology of compulsion and its persistence". Nature Reviews Neuroscience 2 (10): 695–703. doi:10.1038/35094560. PMID 11584307.
^ Ramón y Cajal, S (1894). "The Croonian Lecture: La Fine Structure des Centres Nerveux". Proceedings of the Royal Society of London 55 (331–335): 444–468. doi:10.1098/rspl.1894.0063.
^ Lømo, T (2003). "The discovery of long-term potentiation". Phil. Trans. Roy. Soc. London B (Biological Sciences) 358 (1432): 617–620. doi:10.1098/rstb.2002.1226. PMC 1693150. PMID 12740104.
^ Malenka, R; Bear, M (2004). "LTP and LTD: an embarrassment of riches". Neuron 44 (1): 5–21. doi:10.1016/j.neuron.2004.09.012. PMID 15450156.
^ Curtis, CE; D'Esposito, M (2003). "Persistent activity in the prefrontal cortex during working memory". Trends in Cognitive Sciences 7 (9): 415–423. doi:10.1016/S1364-6613(03)00197-9. PMID 12963473.
^ Tulving, E; Markowitsch, HJ (1998). "Episodic and declarative memory: role of the hippocampus". Hippocampus 8 (3): 198–204. doi:10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G. PMID 9662134.
^ Martin, A; Chao, LL (2001). "Semantic memory and the brain: structures and processes". Current Opinion in Neurobiology 11 (2): 194–201. doi:10.1016/S0959-4388(00)00196-3. PMID 11301239.
^ Balleine, BW; Liljeholm, Mimi; Ostlund, SB (2009). "The integrative function of the basal ganglia in instrumental learning". Behavioral Brain Research 199 (1): 43–52. doi:10.1016/j.bbr.2008.10.034. PMID 19027797.
^ Doya, K (2000). "Complementary roles of basal ganglia and cerebellum in learning and motor control". Current Opinion in Neurobiology 10 (6): 732–739. doi:10.1016/S0959-4388(00)00153-7. PMID 11240282.
^ a b c Principles of Neural Development, Ch. 1
^ Principles of Neural Development, Ch. 4
^ Principles of Neural Development, Chs. 5, 7
^ Principles of Neural Development, Ch. 12
^ a b Wong, R (1999). "Retinal waves and visual system development". Annual Review of Neuroscience 22: 29–47. doi:10.1146/annurev.neuro.22.1.29. PMID 10202531.
^ Principles of Neural Development, Ch. 6
^ Rakic, P (2002). "Adult neurogenesis in mammals: an identity crisis". J. Neuroscience 22 (3): 614–618. PMID 11826088.
^ Ridley, M (2003). Nature via Nurture: Genes, Experience, and What Makes Us Human. Forth Estate. pp. 1–6. ISBN 978-0-06-000678-5.
^ Wiesel, T (1982). "Postnatal development of the visual cortex and the influence of environment" (PDF). Nature 299 (5884): 583–591. doi:10.1038/299583a0. PMID 6811951.
^ van Praag, H; Kempermann, G; Gage, FH (2000). "Neural consequences of environmental enrichment". Nature Reviews Neuroscience 1 (3): 191–198. doi:10.1038/35044558. PMID 11257907.
^ Principles of Neural Science, Ch. 1
^ Storrow, HA (1969). Outline of Clinical Psychiatry. Appleton-Century-Crofts. pp. 27–30.
^ Thagard, P (2008). In Zalta, EN. "Cognitive Science". The Stanford Encyclopedia of Philosophy. Retrieved 2011-10-14.
^ Bear, MF; Connors, BW; Paradiso, MA (2007). "Ch. 2". Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins. ISBN 978-0-7817-6003-4.
^ Dowling, JE (2001). Neurons and Networks. Harvard University Press. pp. 15–24. ISBN 978-0-674-00462-7.
^ Wyllie, E; Gupta, A; Lachhwani, DK (2005). "Ch. 77". The Treatment of Epilepsy: Principles and Practice. Lippincott Williams & Wilkins. ISBN 978-0-7817-4995-4.
^ Laureys, S; Boly, M; Tononi, G (2009). "Functional neuroimaging". In Laureys S, Tononi G. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology. Academic Press. pp. 31–42. ISBN 978-0-12-374168-4.
^ Carmena, JM et al. (2003). "Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates". PLoS Biology 1 (2): 193–208. doi:10.1371/journal.pbio.0000042. PMC 261882. PMID 14624244.
^ Kolb, B; Whishaw, I (2008). "Ch. 1". Fundamentals of Human Neuropsychology. Macmillan. ISBN 978-0-7167-9586-5.
^ Abbott, LF; Dayan, P (2001). "Preface". Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press. ISBN 978-0-262-54185-5.
^ a b c Tonegawa, S; Nakazawa, K; Wilson, MA (2003). "Genetic neuroscience of mammalian learning and memory". Phil. Trans. Roy. Soc. London B (Biological Sciences) 358 (1432): 787–795. doi:10.1098/rstb.2002.1243. PMC 1693163. PMID 12740125.
^ a b Finger, S (2001). Origins of Neuroscience. Oxford University Press. pp. 14–15. ISBN 978-0-19-514694-3.
^ Finger, S (2001). Origins of Neuroscience. Oxford University Press. pp. 193–195. ISBN 978-0-19-514694-3.
^ Bloom, FE (1975). In Schmidt FO, Worden FG, Swazey JP, Adelman G. The Neurosciences, Paths of Discovery. MIT Press. p. 211. ISBN 978-0-262-23072-8.
^ Shepherd, GM (1991). "Ch.1 : Introduction and Overview". Foundations of the Neuron Doctrine. Oxford University Press. ISBN 978-0-19-506491-9.
^ Piccolino, M (2002). "Fifty years of the Hodgkin-Huxley era". Trends in Neurosciences 25 (11): 552–553. doi:10.1016/S0166-2236(02)02276-2. PMID 12392928.
^ Sherrington, CS (1942). Man on his nature. Cambridge University Press. p. 178. ISBN 978-0-8385-7701-1.
^ Jones, EG; Mendell, LM (1999). "Assessing the Decade of the Brain". Science 284 (5415): 739. doi:10.1126/science.284.5415.739. PMID 10336393.
^ Buzsáki, G (2004). "Large-scale recording of neuronal ensembles". Nature Neuroscience 7 (5): 446–451. doi:10.1038/nn1233. PMID 15114356.
^ Geschwind, DH; Konopka, G (2009). "Neuroscience in the era of functional genomics and systems biology". Nature 461 (7266): 908–915. doi:10.1038/nature08537. PMID 19829370.